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About Ramboll Ny TWAIN

Strategic Advisory

Operations & Maintenance + Strategic advisory for all aspects of wind farm development
+ Strategy + Technical, environmental & commercial due diligence
+ Lifecycle Planning & Support « Bid Support

+ Structural Integrity Mgmt
+ Lifetime extension

Market-entry & Go-to-market strategies
Supply-chain assessment
Sustainability assessments & evaluations

Assisting clients from
pre-feasibility to operation AT S e

« Bottom-fixed foundation design
(monopile, jacket, gravity-based &
novel concepts)

Floating foundation design
Substation foundation & topside

Project Development

« Site identification & feasibility studies

« Technical concept development & selection
+ Layout & micro-siting

+ Cost estimation, LCOE analysis

« Procurement & Contracting

Package & Project Management

900 c d t . ggrs-ggdnesign HSEQ Management
+ Wl n eXpe I' S « Low-carbon design gilzs\lfvigp;erface Management
Wind & Site

. . . Transport & Installation
Engineering
O FFI Ces I n 2 6 CO U n trl eS + Development of T&I concepts
& equipment selection
+ Development of construction
schedules
+ Port assessment

« Planning & management of wind
measurement campaigns

Wind resource assessments

Energy vyield assessments

Met-ocean studies

Geophysical & geotechnical assessment
and interpretation

» Digital ground modeling

Technology agnostic consultant

Electrical Design Environmental & Social Advisory

+ System studies + Environmental & Social Impact Assessments

+ Grid connection concept + Constraint assessments

« LV, MV and HV grid design « Cultural heritage studies

« Substation design « Co-existing strategies and nature-inclusive design



Background & TWAIN

Operators are focused on keeping their asset operational following a
pre-determined inspection & maintenance schedule.

Leading players are aiming to implement risk based inspection: planning
more selective visits, using findings from remote monitoring and
observations on site - Reliability Centered Maintenance.

How should they change their approach in the context of wind farm
control?



Research question

What is the impact of wind farm control on the structural reliability of wind turbines?

Case study on the tower & foundation of Lillgrund offshore
wind farm, located in Sweden, operational since 2007,
featuring gravity based foundations

Jeppsson, Joakim, Larsen, Poul Erik, and Larsson, Aake. Technical
Description Lillgrund Wind Power Plant. Sweden, 2008.



Approach

Methodology:
(Semi-quantitative) Failure Modes, Effects, and Criticality Analysis (FMECA).
Workshop with 11 experts from consortium partners ( DTU, CENER, TUM, EDF, Engie)

Objective:

ldentify means to monitor and improve operational reliability, reduce failure risks, and
inform strategies for spare part management and risk-based inspections.

What control strategies do we consider?
Baseline (normal power production)
Derating
Yaw steering (up to 30 degrees)



Structured approach to evaluating risk &y TWAIN

Break down our system (wind power plant) into subsystems and components
Assign functional descriptions of each component
Describe failure modes, the failure cause and end effect

Evaluate likelihood and consequential probability in the beta fFactor

Score the consequence of the end effect for severity across multiple types of impact
(safety, production availability, environmental, intervention, spare part costs)

All scores are given on a 3 tier scale (low — medium - high) with defined categories

Continuous improvement: reassess scoring based on feedback from operations



How do we evaluate risk?

Two parameter approach:
Risk = likelihood * consequence.

Three parameter approach
Risk Priority Number = likelihood * detectability * consequence

Ramboll approach
Criticality Number = Likelihood Bracton (3 Severity)
Criticality level Criticality number range
Low 5-43
Medium 44 -90




Step 1: System Breakdown

The asset/sub-system under consideration is divided into systems and components.
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Primary Structure Breakdown
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Jeppsson, Joakim, Larsen, Poul Erik, and Larsson, Aake.
Technical Description Lillgrund Wind Power Plant. Sweden, 2008.
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Change in loading for control strategies

Derating:
Damage equivalent loads decrease

Wake steering
Damage equivalent loads increase
Different loading profile due to yaw offset
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Example failure mode description & TWAIN

Failure mode: Aerodynamic force variations beyond design assumptions lead to
increased dynamic loading on the tower. These repeated stress cycles accelerate fatigue
crack initiation and propagation in critical tower locations.

Failure cause: Dynamic loading passed down from the rotor to the support structure

Likelihood Beta Factor
« Baseline: Possible  Baseline: Medium
« Derating: Not Expected  Derating: Low

« Wake steering: High « Wake steering: High
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Results N TWAIN

Changes in distribution of likelihood Changes in distribution of beta factor
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Results N TWAIN

Changes in distribution of Criticality Criticality Number = Likelihood * Bycror * (Z Severity)
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Conclusions

& TWAIN

We have applied FMECA to identify and evaluate failure modes that may be impacted by a
change in wind turbine control

Semi-quantitative scoring, based on experience of the participants and assumptions on
the change in loading

Focus on the differences in likelihood and beta factor to reflect different conditions.

Next steps

Quantify the delta in DEL for Lillgrund and its effect on remaining lifetime and failure
rates

Evaluate failure modes for other components (e.g. blades, yaw bearing)
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