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TWAIN

Use of AI to train surrogate
models to enable 
multi-objective optimization 
of wind farm control

Set of toolboxes and case studies 
showcasing the functionality
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About Ramboll

Assisting clients from 
pre-feasibility to operation

900+ wind experts

Offices in 26 countries

Technology agnostic consultant
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• Operators are focused on keeping their asset operational following a 
pre-determined inspection & maintenance schedule.

• Leading players are aiming to implement risk based inspection: planning 
more selective visits, using findings from remote monitoring and 
observations on site  → Reliability Centered Maintenance.

• How should they change their approach in the context of wind farm 
control?
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Background



Research question 
in the context of wind farm control

Case study on the tower & foundation of Lillgrund offshore 
wind farm, located in Sweden, operational since 2007,  
featuring gravity based foundations

What is the impact of wind farm control on the structural reliability of wind turbines?

Jeppsson, Joakim, Larsen, Poul Erik, and Larsson, Aake. Technical 

Description Lillgrund Wind Power Plant. Sweden, 2008.



Approach

• Methodology: 
• (Semi-quantitative) Failure Modes, Effects, and Criticality Analysis (FMECA).

• Workshop with 11 experts from consortium partners ( DTU, CENER, TUM, EDF, Engie)

• Objective: 
• Identify means to monitor and improve operational reliability, reduce failure risks, and 

inform strategies for spare part management and risk-based inspections.

• What control strategies do we consider?
• Baseline (normal power production)

• Derating

• Yaw steering (up to 30 degrees)



Structured approach to evaluating risk

• Break down our system (wind power plant) into subsystems and components

• Assign functional descriptions of each component

• Describe failure modes, the failure cause and end effect

• Evaluate likelihood and consequential probability in the beta factor

• Score the consequence of the end effect for severity across multiple types of impact 
(safety, production availability, environmental, intervention, spare part costs)

• All scores are given on a 3 tier scale (low – medium – high) with defined categories

• Continuous improvement: reassess scoring based on feedback from operations
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How do we evaluate risk? 

• Two parameter approach: 

• Risk = likelihood * consequence. 

• Three parameter approach (IEC 60812:2018):

• Risk Priority Number = likelihood * detectability * consequence

• Ramboll approach (Scheu et al 2019*) 

• Criticality Number = Likelihood ∗ βfactor ∗ σ Severity
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Criticality level Criticality number range

Low 5 – 43

Medium 44 – 90

High 91 – 135

* Scheu, M. N., Tremps, L., Smolka, U., Kolios, A., & Brennan, F. (2019). A systematic Failure Mode Effects and Criticality Analysis for 
offshore wind turbine systems towards integrated condition based maintenance strategies. Ocean Engineering, 176, 118-133.



Step 1: System Breakdown
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The asset/sub-system under consideration is divided into systems and components.

- We don’t expect deltas for secondary structure. 
- Only deltas in loading of primary structure
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Primary Structure Breakdown
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- We don’t expect deltas for secondary structure. 
- Only deltas in loading of primary structure

Jeppsson, Joakim, Larsen, Poul Erik, and Larsson, Aake.

Technical Description Lillgrund Wind Power Plant. Sweden, 2008.



Change in loading for control strategies 

• Derating:
• Damage equivalent loads decrease

• Wake steering
• Damage equivalent loads increase

• Different loading profile due to yaw offset
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Example failure mode description

Failure mode: Aerodynamic force variations beyond design assumptions lead to 
increased dynamic loading on the tower. These repeated stress cycles accelerate fatigue 
crack initiation and propagation in critical tower locations.

Failure cause: Dynamic loading passed down from the rotor to the support structure
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Beta Factor
• Baseline: Medium
• Derating: Low
• Wake steering: High

Likelihood
• Baseline: Possible
• Derating: Not Expected
• Wake steering: High



Changes in distribution of likelihood Changes in distribution of  beta factor
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Results
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Results
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Conclusions

• We have applied FMECA to identify and evaluate failure modes that may be impacted by a 
change in wind turbine control

• Semi-quantitative scoring, based on experience of the participants and assumptions on 
the change in loading

• Focus on the differences in likelihood and beta factor to reflect different conditions.

Next steps

• Quantify the delta in DEL for Lillgrund and its effect on remaining lifetime and failure 
rates

• Evaluate failure modes for other components (e.g. blades, yaw bearing)
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Thank you
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